
Fast Face Detection Using Graphics Processor
Kailash Devrari#1, K.Vinay Kumar#2

Department of Computer Science and Engineering, National Institute of Technology Karnataka
Surathkal, India

Abstract— Fast face detection is one of the key components of
various computer vision applications. Viola-Jones algorithm
provides a good and fast detection for low and medium
resolution images. This paper proposes a new and fast approach
to perform real time face detection. The proposed method
includes the enhanced Haar-like features and uses SVM for
training and classification. Experimental result shows that our
proposed architecture works well for high resolution images.
Our design model combines conventional programming using
CPU with GP-GPU programming using NVIDIA CUDA for fast
face detection.

Keywords— face detection, Haar-like Features, Integral Image,
SVM, GPU, CUDA.

I. INTRODUCTION

Face detection is the process of detecting faces in input
images. Face detection is important because it is the first step
in various applications like face recognition, video
surveillance, Human Computer Interaction etc. Since all the
mentioned applications are often used in real time, so there is
a need of a fast face detection system. Traditionally expensive
dedicated hardware was used to achieve the desired rate of
detection. The first Software-based real-time face detection
algorithm was proposed by Viola and Jones [1]. It has now
become the de-facto standard for real-time face detection.
However it doesn’t suits well for images with high resolution,
hence we need to look for high performance face detection
solutions for fast face detection with reasonable cost.

Parallelisation is the best way to achieve faster face
detection. To detect face in a given image we need to run a
sub window over the image and check whether it is a face or
not. This particular step of checking a sub-window for face
basically consists of executing same set of instructions on
each sub window. The calculation of each sub window doesn't
depend on any other sub window, which makes face detection
a highly parallelizable problem. Since GPU is a Single
Instruction, Multiple Threads (SIMT) processor it is very
much suitable for performing these calculations in parallel and
thus saving a lot of processing time. With the help of NVIDIA
CUDA toolkit it is now possible to perform general purpose
computations on GPU.

The main contributions of this paper are:
1. It gives a detail explanation about calculation of

Integral Image in Parallel.

2. Implementation of modified Viola Jones algorithm
on graphics processors.

3. Modification of GPUSVM [2] to work properly with
proposed face detection algorithm.

Rest of this paper gives details about the algorithm, its
CUDA implementation and the results obtained. Section II
gives a brief overview of related work done, section III
describes the concept of Integral Image and haar like features,
and section IV gives details of the proposed architecture. In
section V we describe the algorithm used and GPU
implementation of the algorithm. Section VI contains the
results obtained and section VII contains the conclusion and
section VIII contains the future work needed to be done.

 II. RELATED WORK

The proposed architecture is mainly based on Viola and
Jones face detection algorithm [1]. They introduced the
concept of Integral Image, Haar-like features and Cascaded
Adaboost classifier for face detection. The algorithm can be
seen as a detector window scanning the image, looking for
features of human face. If more than a particular number of
features are present in the detector window then it is
considered as the face. Integral Image and Features, two of the
components of Viola and Jones algorithm, used in the
proposed architecture are explained in section III.

A lot of work is being done for accelerating the face
detection process. Highly optimized OpenCV implementation
[3] of face detection algorithm provides speed of 1.78FPS for
images of size 640x480(VGA images). There exists few GPU
based Implementation of Viola-Jones algorithm. The fastest
among them provides a speed of about 15.2 FPS [4] using the
cluster of four Graphics processors.

III. INTEGRAL IMAGE AND HAAR-LIKE FEATURES

A. Integral Image

Integral Image Int.Img.(x,y) at any point (x,y) contains the
sum of all the points above and to the left of the point (x,y).

Int.Img(x,y) = ∑∑(xi,xj) (1)
Since calculating the sum of pixel inside a rectangle

requires the Integral image values of the four corners only, the
feature calculation can be done in constant time. Figure 2

Kailash Devran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011,1082-1086

1082

explains how we can calculate the sum of pixels inside a
rectangle.

Fig. 1 A 3x3 image and its corresponding Integral Image

Fig. 2. Calculation of Sum of pixels in rectangle using Integral Image

Sum (ABCD) = Int.Img(D) - Int.Img(B) (2)

-Int.Img(C)+Int.Img(A)
The value of Int.img (A) is needed to be added because its

being subtracted two times from Int.Img(D).

B. Feature

We used Haar-like features based on Viola and Jones face
detection algorithm [1]. Features are represented as the
rectangles, we have used features consisting two and three
rectangles. Features used in our algorithm are show in figure 3.
Feature value is the difference in the sum of pixels values of
the rectangle in black region to the sum of pixel values of the
rectangle in the white region.

Fig. 3. Features Using In the algorithm

IV. PROPOSED ARCHITECTURE

Our proposed architecture uses both CPU and GPU for face
detection. CPU main work is to grab the frame/image convert
it into grey scale and copy it to the Graphics Processor.

Fig. 4. Proposed Architecture for face detection

After that the high computation part i.e. the steps involving
calculation of Integral Image and the feature extraction is
done on GPU. Because of its very good performance in
various machine learning problems SVM had become a very
popular approach for face detection, but SVM classification
was very slow making it unsuitable for real time face
detection. Use of GPU for SVM classification removes the
slowness constraints from the SVM and makes it suitable for
real time face detection.

Our proposed architecture is shown in figure 4. We used
GPUSVM [3] for both training and classification. Next two
sections give a detail about the training phase and the
classification phase of the algorithm.

A. Training Phase

Training was done using Labeled Faces in the Wild (LFW)
database [5]. This database is chosen as it contains a large
number of images in unconstrained environment. This
database gives the true estimate of how an algorithm works in
unconstrained environment. For training faces we randomly
chose 2000 faces from LFW database, and for non-faces we
created a database of 4200 non-face images. All sample
images were then converted to grey scale and resized to
128x128 pixels. For feature calculation different sized
rectangles were used for different features, the size of
rectangle used for different feature are given in table 1. These
different sized feature windows were used keeping in mind
the size of eyes and all these features gives us a total of 510

Kailash Devran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011,1082-1086

1083

features per images, which is way less than the total number
of pixels for image.

Table 1. Size of rectangle Used for different features

FEATURE NO. RECTANGLE SIZE

1 32X16

2 16X32

3 48X32

4 32X48

5 48X48

B. Classification Phase

Classification phase was carried out on frames grabbed
from the webcam, and some of the randomly chosen images
from LFW database. First we converted the image into grey
scale, after that copied the grey scaled image to GPU. Then a
detection sub-window of size 32x32 was run over the whole
image. After processing the image with detection sub-window
size of detection sub-window is increased by a factor of
1.5.Since we are using GPU for computation, we calculate
features for all sub-windows in parallel and then use SVM for
classifying the sub-window as face or non-face.

V. ALGORITHM AND ITS GPU IMPLEMENTATION

Proposed architecture for face detection is executed on
Quadro FX580 GPU, and the language used is CUDA
programming Language [6] an extension to C programming
language. Algorithm for face detection is as follows:

1. Convert image into grey Scale.
2. Copy Image array to the GPU.
3. Calculate Integral Image.
4. For all Possible Sub-Window Sizes Do.
5. Create all sub-windows.
6. Assign each sub-window to different block.
7. For each sub-window Do.
8. Calculate feature for each sub-window in

 Parallel.
9. Classify the sub-window as face or non-

 face using SVM.
10. Send the result back to the CPU.
11. Draw rectangle over the detected sub-window.
12. End.

The main steps involved in the algorithm are Integral Image
calculation, feature extraction and SVM classification [7].
Following sections provides a detailed GPU implementation
of these three steps.

A. Integral Image on GPU

 For parallel Integral Image calculation we have used the
concept of Prefix sum. The Prefix sum is an operation on

array in which each element in the resulting array is obtained
from the sum of the elements in the operand array up to its
index i.e. for input array [a0, a1, a2, a3, …, an-1, an] the output
will be [a0, a0+a1, a0+a1+a2, …, (a0+a1+a2…an-1),
(a0+a1+a2…an)]. At any index K of the array the output will be

.

Integral Image calculation is divided into two steps.
1. Take each row of the Image in a temporary array and
calculate its Prefix sum. Figure 5 shows state of the
image after first step.

Fig. 5. Performing the row wise Prefix sum ().

2. Take each column of the Image obtained after step 1
in a temporary array and calculate its Prefix sum. Figure
6 shows Final state of the image (i.e. Integral Image).

Fig. 6. Performing the column wise Prefix sum ().

We first calculate step 1 in parallel by assigning each row to
different block. Then step 2 by assigning each column to
different block. After these two steps we get the Integral
Image.

B. Feature Extraction

For feature extraction we first created all the sub-windows
of a given size. Each sub-window is given an Identification
Number (ID) denoted by the BlockIdx.x (i.e. X dimension of
the blocks in CUDA kernel), BlockIdx.y(Y dimension of
CUDA kernel) is used for calculation of features. The X
(blockIdx.x) and Y (blockIdx.y) dimensions of the CUDA
kernel are shown in Figure 7.

Kailash Devran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011,1082-1086

1084

Fig. 7. X and Y dimensions of CUDA kernel

The obtained features were then given to SVM for
classification. This process is repeated for all the possible sub-
window sizes.

C. Support Vector Machine

Classification is done using GPUSVM [2]. GPUSVM
provides the same functionality as that of LIBSVM [8], the
most commonly used support vector machine for
classification. GPUSVM takes data from file as input. We
modified GPUSVM so that it can directly take the feature
values from GPU memory as input and provide us the output
in an array instead of the output file.

VI. RESULTS

For testing proposed architecture random images from the
LFW database and the frames captured from webcam were
used. Figure 8(a) shows face detected in image with two faces
and figure 8(b) shows face detection in an image with partial
occlusion.

(a) (b)

Fig. 8(a) Detection of two faces in an image. (b) Detection of face with
partial occlusion

 We obtained a high correct detection rate of 97.5% on
LFW database. The false positive rate for our algorithm is
1.5%. Experimental results shows that we were able to attain a
speed of 3.3FPS, which is almost twice the speed attained by
OpenCV implementation.

Figure 9 provides the comparison between the time taken by
CPU and time taken by GPU for face detection. Figure 10
gives the speed up obtained by using GPU for different image
size during face detection.

Fig. 9. Comparison of CPU execution time with GPU execution time

Fig. 10. Speed up of GPU execution time over the CPU execution time

VII. CONCLUSION

Section VI shows that our proposed architecture has high
detection rate of 97.5%. Our architecture gives speed up of
more than 1.6 for an image of size 250x250 which increases to
more than 2.5 for image of size 2592x1900, which suggest
that the speed up increases with the increase in the size of the
input images. This makes our proposed GPU architecture
suitable for high resolution images. Our implementation
suggests that using Graphics processors, we can achieve a
very high speed up for face detection. Results in Section VI
suggest that with the use of high end GPUs it is possible to
attain a high speed for face detection.

Kailash Devran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011,1082-1086

1085

VIII. FUTURE WORK

Current algorithm works for frontal faces with high
efficiency, it can be modified to work for images with side
pose. There is need to incorporate some new features for side
pose estimation in proposed algorithm. There is room for
further optimization of the code developed. One of the main
area of research is to fully optimize the use of GPU to attain
much higher speed up. Using more than one GPU for
processing is other area for future work. We can use a cluster
of GPUs to process an image to attain a very high speed of
detection.

REFERENCES

[1] Viola. P and Jones. M, “Robust real-time face detection”, International
Journal of Computer Vision, vol. 2a.b., pp.137-154, 2004.

[2] GPUSVM. [Online].Available:
 http://www.cs.berkeley.edu/~catanzar/GPUSVM/ .

[3] J. P. Harvey, “Gpu acceleration of object classification algorithms using
nvidia cuda,” Master’s thesis, Rochester Institute of Technology,
Rochester, NY, Sept. 2009.

[4] Hefenbrock, D. Oberg, J. Nhat Thanh Kastner, R, Baden S.B.
“Accelerating Viola-Jones Face Detection to FPGA-Level using GPUs”,
18th IEEE Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2010, pages 11-18.

[5] Gary B. Huang, Manu Ramesh, Tamara Berg, and Eric Learned Miller.
Labeled Faces in the Wild: A Database for Studying Face Recognition
in Unconstrained Environments. University of Massachusetts, Amherst,
Technical Report 07-49, October, 2007.

[6] NVIDIA CUDA Programming Guide Version 3.0, NVIDIA, Oct. 2010.
[Online]. Available:
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/N
VIDIA_CUDA_ProgrammingGuide.pdf.

[7] Waring, C.A.and Xiuwen Liu. “Face detection using spectral
histograms and SVMs”. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol.35, pages: 467 – 476, June 2005.

[8] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support
vector machines, 2001. [Online]. Available:
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Kailash Devran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011,1082-1086

1086

